

Спецификация

молния

НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ

СПЕЦИФИКАЦИЯ АППАРАТНОЙ ЧАСТИ

Рентгеновская трубка	
Тип трубки	Микрофокусная, открытая
Фокальное пятно	0,9 мкм
Макс. напряжение	160 кВ
Макс. ток	200 мкА
Рентгеновское изображен	ние
Детектор	Плоскопанельный, 3,2 МПкс
Активная область	153 х 204 мм
Системное увеличение	Макс. 4800х
Манипулятор	
Размер стола	460 x 510 мм
Макс. вес образца	5 кг
Перемещение по оси X	400 мм
Перемещение по оси Y	450 мм
Перемещение по оси Z	200 мм
Наклон детектора	Макс. 70°
Вращение стола	Макс. 360°
Рабочая станция	
Монитор	24 дюйма, 2 шт.
Процессор	Intel® Pentium i5 Process
Оперативная память	8 Гб
Жёсткий диск	500 Гб + 250 Гб (SSD)
Общие характеристики	
ШГВ / вес	1350 x 1450 x 1660 мм / 2 200 кг
Электропитание	220 ВА, однофазное 50/60 Гц
Рентген безопасность	Доза утечки менее 1 мкЗв/ч

ОСОБЕННОСТИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Дружественный интерфейс

- интуитивно понятное, гибкое рабочее пространство
- простое управление мышью и навигация
- «Щелкните и отцентрируйте» на рентгеновском изображении или управление с помощью джойстика
- на панели навигации отображаются фактические изображения таблицы

Модуль автоматической проверки BGA

 автоматический расчет диаметра шарика BGA, процентного содержания пустот автоматическое определение «годен/не годен»

Выбор режима проверки

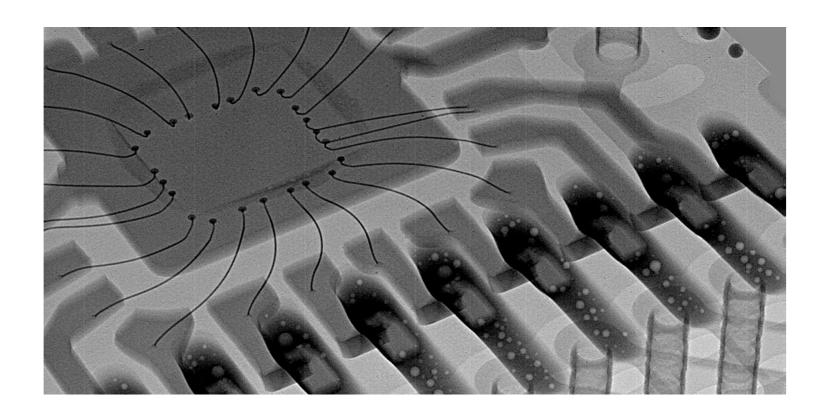
 управление базой данных параметров рентгеновского снимка и настройки изображения

Обработка изображения

- усреднение, контрастность/яркость, бинаризация, инверсия
- настройка гистограммы
- фильтрация изображения: повышение резкости, улучшенный фокус

Различные инструменты измерения и аннотирования

- измерение: линия, точка к точке, центр к центру
- аннотация и отчетность


СПЕЦИФИКАЦИЯ МОДУЛЯ КТ

Станция реконструкции КТ	
Монитор	24 дюйма, 2 шт.
Процессор	Intel® Pentium i5 Process
Оперативная память	8 Гб
Жёсткий диск	500 Гб + 250 Гб (SSD)
ПО для реконструкции и обработки данных КТ	
Алгоритм реконструкции	Конусно-лучевой алгоритм Фельдкампа
Режимы сканирования	Обычное сканирование (полное или частичное), наклонное сканирование
Время реконструкции	< 10 сек.
Аппаратная часть для KT	

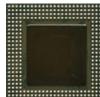
Манипулятор «Quick Exchange» для конусно-лучевой томографии. Высокоточный двигатель, установленный перпендикулярно направлению рентген трубки и детектора. Наклонная томография не требует переключения между окнами программы.

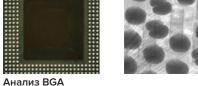
ОСОБЕННОСТИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОБРАБОТКИ ДАННЫХ КТ

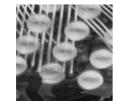
- VR (объемный рендеринг) для 3D визуализации
- Визуализация под любым углом
- Совместимость со стандартом DICOM 3.0
- 3D-синхронизация.
- Неограниченный наклонный срез / неограниченный уровень наклонного просмотра
- VR с секущей плоскостью, MIP, MPR
- 3D-измерение с функциями анализа
- 3D-увеличние
- Функция отчета

Рентгеноскопическая система X-eye SF160FCT

- Технологии рентгеноскопии и компьютерной томографии для инспекции изделий электроники
- Технологии послойного сканирования и томографии Oblique CT / Cone beam CT
- Спецификация системы

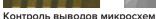

А 309187 Россия, Белгородская обл., г. Губкин, ул. Белгородская, д. 331, офис 8

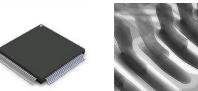


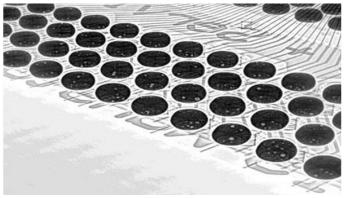

Рентгеноскопическая система X-eye SF160FCT

ИДЕАЛЬНОЕ РЕШЕНИЕ ДЛЯ РЕНТГЕНОСКОПИИ И 3D АНАЛИЗА

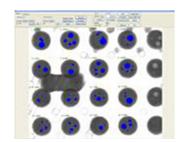
- микрофокусная открытая рентгеновская трубка 160 кВ
- размер фокального пятна 0,9 мкм
- размер стола 460 мм х 510 мм (опционально 550 мм х 650 мм)
- 5-осевой манипулятор
- наклон 0-70°
- максимальное увеличение до 4800х
- удобный пользовательский интерфейс с различными программными средствами
- модуль микро-КТ и наклонное послойное сканирование

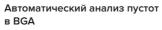


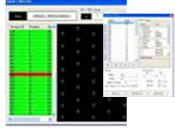




SF160FCT — это микрофокусная рентгеноскопическая система высокого разрешения для контроля полупроводников, печатных плат и электронных компонентов. Позволяет обнаруживать скрытые микродефекты благодаря превосходной рентгеновской визуализации.


Система SF160FCT оснащена рентген трубкой открытого типа 160 кВ с размером фокального пятна 0,9 мкм. Позволяет увеличивать изображения до 4800х и контролировать объекты под углом до 70° с помощью 5-осевого манипулятора.


3D-КТ (компьютерная томография) визуализирует скрытые структуры и микродефекты внутри объекта. Уникальная технология наклонной компьютерной томографии SEC обеспечивает послойную визуализацию большого образца с высоким увеличением. Как правило, КТ- сканирование ограничено размером объекта, но технология наклонной КТ может быть адаптирована к сборкам печатных плат, крупногабаритным многослойным платам и даже к полупроводниковым пласти-

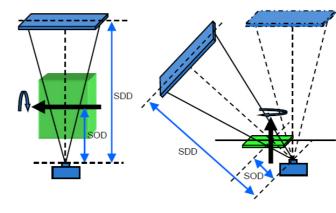


УДОБНАЯ ПОЛЬЗОВАТЕЛЬСКАЯ ПРОГРАММНАЯ СРЕДА

Автоматическое обучение (CNC программирование)

Управление джойстиками или

Программное обеспечение для 3D визуализации данных КТ



Рентгеноскопическая система X-eye SF160FCT

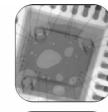
- интуитивно понятный и гибкий пользовательский интер-
- управление джойстиком или мышью
- получение изображений в режиме реального времени
- отслеживание автофокусировки

- автоматическое обучение максимальная пропускная способность инспекции
- сверхбыстрая 3D-компьютерная томография на базе графического процессора
- простая замена нити накала нажатием кнопки

ТЕХНОЛОГИЯ НАКЛОННОЙ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ (КТ)

Конусно-лучевая КТ

Наклонная KT


- SDD: Расстояние от рентген трубки до детектора (Source to Detector Distance);
- SOD: Расстояние от рентген трубки до объекта контроля (Source to Object Distance).

Конусно-лучевая компьютерная томография обычно используется для 3D-анализа электронных компонентов. Для анализа плоских и крупногабаритных компонентов, таких как печатная плата, конусно-лучевая компьютерная томография ограничена возможностью получения 3D-изображений с высоким увеличением из-за большого расстояния от источника до объекта (SOD).

Наклонная компьютерная томография выполняется в наклонном направлении, когда объект вращается горизонтально. Уникальная технология обеспечивает высокое увеличение 3D-изображений плоских и крупных компонентов за счет горизонтального поворота объекта без геометрических помех, что обеспечивает небольшое расстояние от источника до объекта (SOD). В процессе 2D сканирования объекта необходимо просто нажать кнопку Наклонной компьютерной томографии без переключения окна, и система предоставит вам 3D-КТ-изображения в течение нескольких минут. Механизм реконструкции компьютерной томографии на базе графического процессора значительно повышает пропускную способность.

РЕНТГЕНОВСКИЕ ИЗОБРАЖЕНИЯ ПО ОБЛАСТЯМ КОНТРОЛЯ

Сборки SMT (технология поверхностного монтажа)

- BGA, CSP обрывы, трещины, холодная пайка
- общее паяное соединение перемычки, пустоты
- автоматический расчет площади пустот

Полупроводниковые корпусированные объекты, светодиоды

- соединение проводов обрывы провода, поднятые провода, смещения
- бампы, расслоения, пустоты, трещины
- 3D-корпусирование микродефекты MCP, TSV, FCB

Многослойные печатные платы

- контроль топологии МПП, быстрая инспекция и анализ
- контроль переходных отверстий, медного слоя
- FPCB (гибкая печатная плата) глухие сквозные отвер-

Электронные компоненты

- разъемы внутренние соединения проводов
- модули камеры крепления компонентов
- общая топология, короткие замыкания, скрытые загрязнения